

ToiletPaper #112
Kotlin Coroutines

Author: Marco Pfattner / Senior Software Architect/ Business Division Automotive Bavaria

✖Problem
Certain actions should run in the background to avoid blocking the main thread of the app. Typically threads or AsyncTasks are
used for this: the action is runs in the background, and finally the result is displayed on the main thread.

✔ Solution
Kotlin offers a more elegant way with coroutines. Coroutines are lightweight threads that are dispatched to a Kotlin-managed
thread pool if you use existing dispatchers. This is comparable with GCD from iOS.

➔ Example
An image should be downloaded and displayed:

private fun downloadImageWithCoroutines() {

 GlobalScope.launch(Dispatchers.Main) {

 binding.status.text = "Downloading image ..."

 // Download the image on an IO dispatcher without blocking the main thread

 val image = withContext(Dispatchers.IO) { downloadImage() }

 // Continue on the main thread

 binding.image.setImageDrawable(image)

 }
}

In the example above, the status is first set on the main thread, followed by an asynchronous download of the image. The
special thing about this is that the main thread is not blocked, but only when the result is available the rest of the code
continues to run on the main dispatcher.
Technically, Kotlin solves this by executing the code as continuation after withContext. This enables you to rewrite the
downloadImage method so that it passes the result to a continuation and does not return it directly. Of course the caller of the
method has to take care of the threading:

private fun downloadImage(continuation: (Drawable?) -> Unit) {

 val drawable = url.openStream()?.use {

 Drawable.createFromStream(it, "image")

 }

 continuation(drawable)

}

A special strength is the combination of several async calls. The async calls can be executed simultaneously

on different IO threads:

// Start multiple requests

val image1 = async(Dispatchers.IO) { downloadImage1() }

val image2 = async(Dispatchers.IO) { downloadImage2() }

// Wait for the results and show the images

binding.image1.setImageDrawable(image1.await())

binding.image2.setImageDrawable(image2.await())

✚ Further Aspects

• Kotlin Under the Hood

• Suspending Functions

• Continuations

https://www.youtube.com/watch?v=Ta5wBJsC39s%20https://kotlinlang.org/docs/reference/coroutines-overview.html
https://kotlinlang.org/docs/reference/coroutines/composing-suspending-functions.html
https://en.wikipedia.org/wiki/Continuation-passing_style

