

ToiletPaper #107
Better testing, better life – with AssertJ

Author: Alexandros Panagiotidis / Senior Software Architect / Office Stuttgart

✖ Problem
How many variants do you know to check whether a collection is empty or not empty in JUnit? You certainly
thought of assertTrue(foo.isEmpty()). But have you ever come across assertEquals(0,
foo.size()) or assertFalse(foo.size() > 0)? Now think about how many ways there are to

compare the contents of one collection with another. This is even more confusing when the order of the
elements plays a role (or not!).

If your head isn’t about to explode yet: consider comparing objects if equals() has not been implemented
or has been implemented incorrectly. All of this and more can be done easily and elegantly with an expressive
framework - e.g. AssertJ.

➔ Solution and Examples
Thanks to Fluent interfaces, AssertJ allows you to chain your expectations to check multiple properties easily:
assertThat(jambit.getMission()).isNotNull().isEqualTo("100% Begeisterung");

Assertions of typed objects directly eliminate some error classes when creating tests. For example, the size
and contents of collections can be checked easily:
assertThat(Arrays.asList("Where", "innovation", "works")).hasSize(3)

 .containsExactly("Where", "innovation", "works") // Order is important

 .containsOnlyOnce("works", "Where", "innovation"); // Order is unimportant

Furthermore, checking predicates for a whole collection is trivial:
assertThat(jambit).extracting(Jambit::getEmployees)

 .allMatch(JambitEmployee::isTopOfMind); // alternatively {any,none}Match

Individual fields and results of methods can be verified easily with extracting():
assertThat(jambit)

 .extracting(Jambit::getBosses).extracting("nickname", JambitBoss::getFullName)

 .containsOnly(tuple("Felli", "Peter F. Fellinger"), tuple("Harti", "Markus

Hartinger"));

As you can see, field names can also be used instead of accessors. In addition to individual values, you can
also compare objects where equals() is missing:
assertThat(jambitStuttgart).extracting(JambitLocation::getAddress)

 .isEqualToComparingFieldByFieldRecursively(JAMBIT_STUTTGART_EXPECTED_ADDRESS);

For exceptions, there are also some useful matchers:
assertThatThrownBy(() -> throw DeveloperException("Out of coffee"))

 .isInstanceOf(DeveloperException.class).hasMessage("Out of coffee");

Finally, here is a more complex example where a collection is compared pairwise to a second one and all
assertions are evaluated for each pair:
assertThat(jambit).extracting(getDivisions)

 .zipSatisfy(fetchDivisionNames(), (JambitDivision actualDivision, String

expectedDivisionName) -> {

 try (AutoCloseableSoftAssertions softly = new

AutoCloseableSoftAssertions()) {

softly.assertThat(actualDivision).extracting("name").startsWith(expectedDivisionNa

me);

softly.assertThat(calculatePowerLevel(actualDivision)).isGreaterThan(9000);

 }

 });

✚ Further Aspects
As you can see, AssertJ has a lot to offer. It's best to have a look at the feature highlights and get started right
away. There are also some migration guides in the documentation – but you can also use AssertJ together
with other frameworks.

http://joel-costigliola.github.io/assertj/
http://joel-costigliola.github.io/assertj/assertj-core-features-highlight.html
http://joel-costigliola.github.io/assertj/assertj-core-quick-start.html
http://joel-costigliola.github.io/assertj/assertj-core-quick-start.html

