

ToiletPaper #90
Pasta Orientata Agli Oggetti

Author: M. W.

✖ Problem

Spaghetti code is often associated with "unstructuredness". Object-oriented (orientata agli
oggetti) programming and paradigms help to avoid spaghetti code. Unfortunately, inheritance and
the template method pattern can cause new ways to develop spaghetti code. However, the terms
spaghetti code and unstructured are too vague to explain this aspect. Therefore, this first attempt
to define spaghetti code more detailed:

The program flow of spaghetti code complicates

that implementation details can be isolated on the one hand
and on the other hand can be hidden.

➔ Example

Personal and generic letters should be created using a compose()method. The abstract class delegates to templates. The
concrete implementations use compile(). An implementation is outlined in PersonalLetter.

The code is structured, but compile() is difficult to test. Details are only hidden to a limited extent. The
reason is the program flow, which meanders through the class hierarchy. Similar examples are:
BaseMapper, BaseTest, Base ...

✔ Suggestions for improvement

Death to the protected! The template method pattern is convenient for public methods such as
addAll() and add() for AbstractList. An inheritance that is only about reuse can often be replaced
by delegation. In this case, the better solution is using the strategy pattern. Classes can easily be isolated and
details can be hidden with private. The CompositionStrategy interface defines the template
methods and MarkdownCompiler implements compile().

✚ Further Aspects

• Template Method Pattern

• Strategy Pattern

• SOLID Design Principles

https://en.wikipedia.org/wiki/Template_method_pattern
https://en.wikipedia.org/wiki/Strategy_pattern
https://en.wikipedia.org/wiki/SOLID

	Pasta Orientata Agli Oggetti
	✔ Suggestions for improvement

