

ToiletPaper #93
Tail Call Elimination

Author: Hannes Lerchl / Senior Software Architect / Business Division New Business

✖ Problem

Functional programming loves functions and recursions in all varieties.

<fud>But these many small function calls are very expensive, aren’t they? And what if my stack overflows
during a recursion?</fud>

✔ Solution

Various compilers/interpreters or languages (Scheme requires this from the interpreter) provide tail call
elimination, e.g. Lisp, Scheme, Lua, Erlang, Elixir, C/C ++ and to a certain extent also Scala and Kotlin.
However, you must adapt your code to trigger this feature. What is it and how does it work?

➔ Example

Let's have a closer look at a trivial example of a recursive function:

a) "Naïve" recursion

int factorial(int n) {

 if (n == 0) return 1;

 return n * factorial(n - 1);

}

b) Recursion with tail calls

int f_hlp(int n, int acc) {

 if (n == 0) return acc;

 return f_hlp(n-1, acc*n);

}

 int factorial_2(int n) {

 return f_hlp(n, 1);

}

Version a) is quite close to the mathematical definition and would probably occur spontaneously to most people. Version b)
seems to be unnecessarily complicated and needs a helper function. So why using it?
The small difference is that the functions in b) end with a function call (the “tail call”). Its result is not processed any further but
simply forwarded to the caller (in (a) it is used for a subsequent multiplication). This ultimately means that no new stack frame
needs to be created, but the existing one can simply be overwritten. The call degenerates to a goto; the return address is
already on the stack.
The compiler transforms the recursion into a loop, so that we don't have to misshape our code with ugly for loops. At runtime,
the code acts like a loop (in terms of speed and stack usage) but remains slim and readable.

✚ Further Aspects

• Although recursion is the standard example here, it is called "tail call elimination" and not "tail
recursion elimination" -- several different functions can be involved

• When debugging, you should keep in mind that the stack trace is very shortened and can seem
strange or useless.

• If your "language of choice" doesn't support this feature, you can
o ignore it and use recursion anyway
o convert the recursion into a loop (which is usually possible … except for Ackermann

function and similar)
o use a "trampoline" (spoiler: heavy going, sloooow)

• I leave it as a practice up to the reader to implement b) with a fold

• By the way, this topic was already covered in 1977 by Guy Steele in one of his “Lambda Papers“
("The Ultimate goto"): http://dspace.mit.edu/bitstream/handle/1721.1/5753/AIM-443.pdf

• Outtakes: When I wanted to test b) with gcc, I wrote a main, which only consisted of printf("5! =
%i\n", factorial_2(5)). I was quite surprised when the call was completely gone in the assembler
code and the “stupid compiler” simply pushed 120 to edx and called printf with it.

• Outtakes 2: So I just threw out the main and compiled both functions: gcc turns both versions a)
and b) into exactly the same loop (three opcodes long). My whole example is kind of pointless.
These damn low-level languages …

https://en.wikipedia.org/wiki/History_of_the_Scheme_programming_language#The_Lambda_Papers
http://dspace.mit.edu/bitstream/handle/1721.1/5753/AIM-443.pdf

	Tail Call Elimination

