

ToiletPaper #5
RandomBeans

✖ Problem

Writing setup code for tests involving complex POJOs is cumbersome and error prone.

This often results in shared test setup code used by several unit tests, which in turn leads to strong coupling between
several tests classes. In addition, it is almost impossible to create all possible POJO combinations and run into all corner
cases.

✔ Solution

Use the RandomBeans library to create random instances for your test cases.

It provides a fluent API for specifying value ranges, fixed values, or a set of values for your created test
instances. It also allows for the creation of more complex POJOs (e.g. recursive object graphs). Using
RandomBeans, one can create different test instances for every test run. If a test fails, it is possible to replay
the exact same test scenario by using the same seed.

Some possible use cases include:

 Populating a test DB with random entities

 Generating random request or responses for your RESTful API

 Creating random input for your validators

 Example

 // example User POJO – setters/getters omitted for the sake of brevity
public class User {

public String name;
public List<String> hobbies;
public LocalDate birthday;
public URL website;

}
// configure a EnhancedRandom for creating User instances
// * generate UTF-8 String with 10 to 15 characters
// * created LocalDates are within a range from 50 years ago till now
// * collections should contain from 1 up to 20 elements
// * the field “website” of our User should have a valid URL
EnhancedRandom er = EnhancedRandomBuilder.aNewEnhancedRandomBuilder()
.charset(Charset.forName("UTF-8"))
.stringLengthRange(10, 15)
.dateRange(now().minusYears(50), now())
.collectionSizeRange(1, 20)
.randomize(field().named("website").ofType(URL.class).inClass(User.class).get(),

UrlRandomizer.aNewUrlRandomizer())
.build();

// create test object using our previously configured EnhancedRandom
User user = er.nextObject(User.class);

✚ Links

 https://github.com/benas/random-beans

By Gernot Pointner

https://github.com/benas/random-beans

