

ToiletPaper #161
Preact – A light-weight alternative to React

Author: Philipp Miller / Software Engineer / Automotive

✖ Problem

React is great, but it's also big. It tries to abstract the DOM as much as possible to save developers from browser-specific
compatibility issues – even when those have already been straightened out by improved standards. For example, the events
generated by the browser are not simply passed through in React but replaced by custom objects. This also affects
performance and bundle size.

✔ Alternative

Preact [1] replicates React's API to a large extent – at first glance it is barely distinguishable from React. The
usual hooks are available (plus a very convenient useErrorBoundary hook). Many 3rd-party libraries for
React work out of the box with Preact (e.g. Material-UI [4]).
Which differences [2] are most important depends on the use case. Here are a few:

 Preact is written entirely in TypeScript [3] – the types themselves are often different from those in React. For
example, instead of ReactNode and FunctionComponent<P>, there are other types like ComponentChildren
and VNode<P>.

 Event listeners receive browser-native event objects as parameters. This also means that they do not bubble
through portals.

 Imports are structured slightly differently (see example).

 Example

✚ Advantages Disadvantages
 Good documentation that helps with the

migration
 Small. I built a minimal Hello World app to

show that:

React Preact

129.23 KiB
gzip: 41.68 KiB

11.08 KiB
gzip: 4.54 KiB

 Less DOM abstraction (only an issue if you
need to support particularly old browsers)

 Implemented in modular TypeScript

 The API is not completely identical (especially for
the types). This may require a bit of relearning.
Some features needed for more React
compatibility (e.g. in 3rd-party libraries) are
available via the preact/compat package.

 Possible compatibility issues with more complex
libraries that access React internals. However,
especially for the larger libraries, tutorials or
adapters are often already available (e.g. mobx-
preact).

[1] https://preactjs.com
[2] https://preactjs.com/guide/v10/differences-to-react
[3] https://preactjs.com/guide/v10/typescript
[4] https://twitter.com/preactjs/status/1152267975078154240

import { Fragment, h, render } from "preact"
import { useState } from "preact/hooks"

const App = () => {
 const [count, setCount] = useState(0)
 const increment = () => setCount(n => n + 1)
 return (
 <>
 <h1>Clicks: {count}</h1>
 <button onClick={increment}>Add one</button>
 </>
)
}

render(<App />, document.getElementById("app"))

