

ToiletPaper #159
Something like Scala's for comprehension in Typescript

Author: André Petermann / Senior Software Architect / Office Leipzig

✖ Problem

Programming with monads such as Option, Result, Either or Try is a suitable way to write programs that clearly separate
domain logic from handling of absence or error. However, the application of this approach to real-world programs often leads
to large closures including deeply nested code blocks. Haskell's do notation or Scala's for comprehension are a nice way to solve
this problem. For example, Scala's for comprehension looks like this:

However, there is no such thing in Typescript.

✔ Solution

The library for-comprehension-ts provides a similar notation to support for comprehension in Typescript:

The library also includes an async version that allows for a seamless integration of regular and async functions using the same
monads. This works without explicit awaiting of Promise inside the functions.
for-comprehension-ts can be used with all implementations of a Monad interface with the operations map, flatMap and
flatMapAsync. The library already includes implementations of the following monads:



Option<T> Result<T, E> Try<T>

abstraction presence or absence success or explicitly typed failure success or implicitly caught exception

constructors some(value: T)
none()

success(value: T)
failure(error: E)

ok(value: T)
error(error: any)

In contrast to pipes this syntax allows programs to be directed acyclic graphs (DAG) whose vertices are named values (e.g., a =
3) and where edges are functions. The graph will be executed lazily, i.e., before yield is called, there is only a definition of a
program. On calling yield, execution will be triggered. Thus, for-comprehension-ts programs can be duplicated, branched and
repeated. Operations will only be executed until the first failure, error or absent value occurs. However, this behavioral aspect
depends on the used monad.

✚ Contribution

for-comprehension-ts is developed by jambit but not used in production yet. So, please feel free to contribute either directly
by adding new features or indirectly by just using it:

 Source code: https://github.com/p3et/for-comprehension-ts
 For comprehension in Scala: https://www.baeldung.com/scala/for-comprehension

val result: Either[String, Int] =
 for {
 dividend <- Right(42)
 divisor <- Right(2)
 divisorVerified <- if (divisor != 0) Right(divisor) else Left("Divisor must not be zero!")
 } yield dividend / divisor

println(result match {
 case Right(value) => value
 case Left(error) => error
})

const result: Result<number, string> =
 For._("dividend", success(42))
 ._("divisor", success(2))
 ._("divisorVerified", ({divisor}) => divisor != 0 ? success(divisor) : failure("Divisor must not be
 zero!"))
 .yield(({dividend, divisorVerified}) => dividend / divisorVerified)
console.log(isSuccess(result) ? result.value : result.error)

