

ToiletPaper #150
Try but don't catch: Elegant error handling with TypeScript

Author: Robert Gruner / Software Engineer / Office Leipzig

✖ Problem
Tired of throw? No longer checking each return value via If to see whether the value is really present? Tired of boilerplate code with
try/catch? You are looking for an implementation of the Result/Optional/Maybe monad? Or have you heard about railway oriented
programming and want to try it out?

✔ Solution
If you are using TypeScript, there is a nice tool for you – neverthrow! As the name suggests, it lets you write code that no longer throws or
catches errors. Instead, there is a Result type that can take the states Ok or Err. The best thing about it, in the sense of railway oriented
programming, is that you can "chain" different Results together and switch between the states, i.e. switch to the Err state or even "recover"
from the Err state back to the Ok state. As if that weren't enough, the library also provides interoperability with Promise through the
ResultAsync type.

 Example

✚ Further Aspects
 https://github.com/supermacro/neverthrow

function hasKeys<T extends object>(item: T, keys: Array<keyof T>): Result<T, string> {

 const requiredKeysArePresent = keys.every((key) => key in item);

 return requiredKeysArePresent ? ok(item) : err('Object to validate has missing keys');

}

// Using the synchronous Result API

async function storeCoffee(candidate?: Coffee): Promise<void> {

 const validationResult: Result<Coffee, string> = exists(candidate)

 // Only if Ok is returned, the code is continued in "andThen".

 .andThen((existingCandidate) => hasKeys(existingCandidate, ['name', 'origin']));

 if (validationResult.isOk()) {

 await saveCoffeeInDb(validationResult.value);

 }

}

function getCoffeeList(): Promise<Coffee[]> {

 return get<Coffee[]>('api.jambit.com/coffee')

 .mapErr((e: ApiError) => {

 logger.error(`Could not get coffee list because of: ${e}`);

 return [coffeeA, coffeeB]; // Recover with fallback value

 }).match((coffeeList: Coffee[]) => {

 logger.info(`There are ${coffeeList.length} types of coffee available.`);

 return coffeeList;

 }, (fallbackList) => fallbackList));

}

// Converting a Promise to ResultAsync

function get<T>(url: string): ResultAsync<T, ApiError> {

 return fromPromise(

 httpClient.get<T>(url, { responseType: 'json' }).then((result) => result.body),

 (e) => mapToApiError(e)); // Replacement for the "catch" method of Promise

}

