

ToiletPaper #149
Testing with Mockito

Author: Alexander Pöhlmann / Software Engineer / Office Leipzig

✖Problem

With its possibilities to mock classes, Mockito is a very powerful tool. But when the equals() methods of the objects to be
checked do not exist or are faulty, Mockito reaches its limits with its verify() methods. Normally, the classes are simply fixed
and that’s it. In the case of external classes, it’s not that simple. There are several possibilities: transferring them into their own
classes, hiding them very well in a wrapper or switching straight to Kotlin.

✔ Solution

A useful solution to completely test the code is to use ArgumentCapture. This makes it possible to capture the instances during
verify() and check them later.

 Example

✚ Further Aspects

 https://www.vogella.com/tutorials/Mockito/article.html
 https://www.baeldung.com/mockito-series
 https://github.com/mockito/mockito

<<<
1

2

3

4

5

6

7

8

9

10

11

12

FuelPortion expectedFuelPortion = FuelPortion.DYNAMIC;

Engine myMockEngine = mock(Engine.class); //Or with @Mock

Car myTestCar = new Car(myMockEngine);

myTestCar.startEngine();

ArgumentCaptor<EngineConfiguration> engineConfigurationCapture = ArgumentCaptor.forClass(EngineConfiguration.class); //Or with @Captor

verify(myMockEngine).start(engineConfigurationCapture.capture()); // capture() is the central call for ArgumentCapture

EngineConfiguration actuelEngineConfiguration = engineConfigurationCapture.getValue();

Assert.assertEquals(expectedFuelPortion, actuelEngineConfiguration.getFuelPortion());

