ToiletPaper #148 jambit®

WHERE INNOVATION WORKS

About hexagons and onions

Author: Marcel Jacob / Software Engineer / Office Leipzig

X Problem

A classic layered architecture usually has three layers depending on each other (see image on
the right). These are considered top-down and each layer only knows the layer directly below
it. However, the dependency of the business layer and the persistence layer must be viewed Business Layer
critically:

Presentation Layer

Why is the business logic dependent on something like a database? Shouldn't it be possible to
execute it independently of a framework or database?

v Solution

One possible solution is hexagonal architecture or ports and adapters architecture. The central terms port and adapter are
explained in the figure below.

In our example, the architecture consists of four layers: presentation, infrastructure, application, and domain, with the
presentation layer omitted for a pure back-end system. However, these are not considered top-down, but from the outside in,
with the domain being the core. Outer layers may access code from inner layers, but not vice versa. This principle corresponds
to the basic idea of the onion architecture, which can be extended with interfaces and their implementations (ports and
adapters) to enable access to other layers. The presentation layer (Ul) is usually a separate project and will not be explained
further in this paper. An overview of the other three layers follows:

Infrastructure Layer

e Can contain framework-specific code Port - defines an interface
e Contains configurations such as Spring or database « One Input Port from outside to the domain layer, e.g. a
. . specific use case
configuration « One Output Port from the domain layer to another system
e Connects the output ports of the domain layer via adapters

. Adapter - defines the port’s implementation
e.g. for the database or messaging = ¢ i

« is a component of the application and infrastructure layer that
connects to the domain layer

Application Layer

Presentation Layer —> Dependency Injection
e Provides interfaces or other applications for the user, e.g. Blogess
REST, GraphQl, CLI etc.

e Connects to the domain layer via adapter of an input port
Domain Layer

e Contains the business logic

Is independent of a framework such as Spring

Allows communication between layers only via defined
input and output ports

Code in this layer is unlikely to change

This structure makes individual classes easier to test and also to maintain and the business logic is independent and can be
moved as a whole if necessary.

If you decide to use hexagonal architecture or a hybrid form with the onion architecture (as in the figure above), you must be
aware of the higher complexity during implementation, which is why this architecture style is only worthwhile from a certain
project size.

+ Further Aspects

e Hexagonal architecture: https://medium.com/ssense-tech/hexagonal-architecture-there-are-always-
two-sides-to-every-story-bc0780ed7d9c
e Hexagonal architecture with Java and Spring: https://reflectoring.io/spring-hexagonal/

