ToiletPaper #143 jambit®

WHERE INNOVATION WORKS

Actor System for Python

Author: Hannes Lerchl / Senior Software Architect / New Business

x Problem

Actor Systems have been around for quite a while (emerged in the 1970s in the context of Al research) and provide a reliable
method for highly parallel program execution. The best-known systems today are probably Erlang, Elixir, and Akka. Oh, how |
wish that there would be such a system to handle the more and more frequent Python back-end requests...

« Solution

Look over there! In fact, there is an Actor System for Python: Thespian. A mature and well-documented library that
provides a reasonable base:

e “Actor spawning” and “message passing” is taken over.

e Timeouts can be realized via delayed messages.

e Inthe background, a separate OS process is created for each actor. This makes it somewhat heavier, but as a
side effect, the GIL is bypassed.

e Actors can be stopped by message (this also stops the process).

e Log messages are collected and merged.

e Withthe ActorTypeDispatcher there is a base class, which sorts the received messages by type and calls
specialized methods (which need to be written).

e The system can also “monitor” file descriptors and sockets (via select) without blocking the whole actor.

e Thereis a “dead letter handling” for messages with disappeared recipients.

e There s a feedback (as a message), if the own message has caused another actor to stumble (i.e.: exception)

e You can register actors globally under a name (with the usual side effects).

e Afeature called “actor troupes” allows horizontal scaling of actors.

e Shell commands can be executed by an actor and the output can be reported (wrapper around
subprocess.Popen).

= Example
1 from thespian.actors import *
2
3 | class Hello(Actor):
4 def receiveMessage(self, message, sender):
5 # a message could be anything that python can pickle/unpickle
6 self.send(sender, 'Hello, World!')
7
8 # the actor keeps running and listening for messages
]
10 | if _ _name__ == "__main__":
11 # the actor system is created as well as a new actor.
12 # this actor will run as its own 05-process on the same machine
13 hello = ActorSystem().createfctor(Hello)
14
5 # send a message to the actor and wait (1 second) for a response
16 print(ActorSystem().ask({hello, 'hi', 1)}
17
18 # command the actor to exit
19 ActorSystem().tell(hello, ActorExitRequest())

=+ Further Aspects

e What is this guy talking about? The actor model!

e Documentation can be found in the Thespian user's guide.

e When Carl Hewitt invented the actor model with his typewriter: “Viewing control structures as
patterns of passing messages”.

e What’s missing is an ecosystem for “generic patterns” like Erlang/OTP offers.

