

ToiletPaper #143
Actor System for Python

Author: Hannes Lerchl / Senior Software Architect / New Business

✖Problem

Actor Systems have been around for quite a while (emerged in the 1970s in the context of AI research) and provide a reliable
method for highly parallel program execution. The best-known systems today are probably Erlang, Elixir, and Akka. Oh, how I
wish that there would be such a system to handle the more and more frequent Python back-end requests…

✔ Solution

Look over there! In fact, there is an Actor System for Python: Thespian. A mature and well-documented library that
provides a reasonable base:

 “Actor spawning” and “message passing” is taken over.
 Timeouts can be realized via delayed messages.
 In the background, a separate OS process is created for each actor. This makes it somewhat heavier, but as a

side effect, the GIL is bypassed.
 Actors can be stopped by message (this also stops the process).
 Log messages are collected and merged.
 With the ActorTypeDispatcher there is a base class, which sorts the received messages by type and calls

specialized methods (which need to be written).
 The system can also “monitor” file descriptors and sockets (via select) without blocking the whole actor.
 There is a “dead letter handling” for messages with disappeared recipients.
 There is a feedback (as a message), if the own message has caused another actor to stumble (i.e.: exception)
 You can register actors globally under a name (with the usual side effects).
 A feature called “actor troupes” allows horizontal scaling of actors.
 Shell commands can be executed by an actor and the output can be reported (wrapper around

subprocess.Popen).

 Example

✚ Further Aspects

 What is this guy talking about? The actor model!
 Documentation can be found in the Thespian user's guide.
 When Carl Hewitt invented the actor model with his typewriter: “Viewing control structures as

patterns of passing messages”.
 What’s missing is an ecosystem for “generic patterns” like Erlang/OTP offers.

