

ToiletPaper #140
Executing SQL queries without databases on CSV files using q

Authors: Fionn Fuchs & Maximilian Konzack / Working Student & Software Engineer / Office Leipzig

✖ Problem
Have you ever stared at a CSV file on your screen and wished it was a database executing SQL queries? We've often found
ourselves wanting not to directly process CSVs but favoring to run SQL queries.

✔ Solution
With q [1], conventional SQL queries can be executed on CSVs and other tabular files without connecting to a database or
to an SQLite database. If needed, q permits exports to an SQLite database. Q supports all common SQL queries types. It is
remarkable that q can be used as a Unix command. By default, q reads from STDIN and writes to STDOUT, which allows
piping with other Unix commands.

Installation:
All major operating systems are supported and can be installed as usual [2].
Disclaimer: We have only tested q via homebrew on macOS.

brew install q

 Examples
Example 1

Let's take the following table as CSV file:

 ID,name,yearofbirth,haircolor

 1,Max Mustermann,1994,brown

 2,Lars Agne,1983,blonde

 3,Otto Normal,1995,brown

 4,Lieschen Müller,1987,black

 5,John Doe,1980,brown

We would like to find out how many people have brown hair. This is obviously trivial with such a small table, but in real
data sets this would be much more tedious and laborious.

Using q, we directly execute a SQL query on this CSV file to filter by hair color. We expect ; to delimit and that the first
line of the CSV describes the column names. Therefore, we use -d to set the delimiter and -H to skip the first line.

$> q -H -d ";" "SELECT COUNT(ID) FROM persons.csv WHERE haircolor = 'brown'"

- Result -

3

 Example 2

Q can also join multiple CSV files on-the-fly. For this purpose, we take this CSV file in addition to the CSV file from
example 1 (see above):

 ID,email

 1,max.mustermann@example.com

 2,lars.agne@example.com

 3,otto.normal@example.com

 4,lieschen.mueller@example.com

 5,john.doe@example.com

Now we want to link both files to output all e-mail addresses of people with brown hair. It would look like this:

$> q -H -d ";" "SELECT persons.name, emails.email FROM persons.csv persons

 JOIN emails.csv emails ON (persons.id = emails.id)

 WHERE persons.haircolor = 'brown'"

- Result -

Max Mustermann max.mustermann@example.com

Otto Normal otto.normal@example.com

John Doe john.doe@example.com

Example 3

Since q treats text as data, we can also process output from Unix commands with q. For example, you can do the
following in q to list all the current process commands that were started on December 24:

$> ps aux | q -H "SELECT COMMAND FROM - WHERE STARTED = '24Dez20'"

- Result -

/System/Library/CoreServices/Santa

...

∆ Performance and Limitations
The current version of q is significantly faster in running SQL queries on CSV files than comparable Go-based tools, such
as Textql and Octosql [3]. We would be interested in comparing q with xsv, which can index and process CSVs.
However, we noticed that q does not allow, for example, to execute FROM on a subquery. Another limitation is that q
uses SQLite as its single SQL dialect. Further limitations can be found on q's website [1].

✚ Further Aspects

 [1] http://harelba.github.io/q/
 [2] http://harelba.github.io/q/#installation
 [3] https://github.com/harelba/q/blob/master/test/BENCHMARK.md
 [4] https://github.com/BurntSushi/xsv

