

ToiletPaper #131
Try but don't catch: Elegant Exception Handling Using the Try Monad

Author: André Petermann / Software Architect / Office Leipzig

✖Problem

Thorough exception handling is essential to achieve robust software. Typically, exceptions are either handled locally
by try{}catch(SpecificException ex){} or in a centralized manner. The latter means that exceptions are propagated up the call
hierarchy and actual handling is implemented by multiple catch-blocks at a single place. Local handling has a negative impact
on code readability. In particular, checked exceptions are quite unpopular among programmers since they enforce either local
handling or explicit upwards propagation by the throws-clause. This situation even lead to Java developments such
as Lombok's @SneakyThrows where checked exceptions are converted into runtime exceptions by automated code
generation. On the other hand, centralized handling is conceptually similar to GOTO because the actual program flow is
interrupted. In professional practice, we mostly find a combination of both approaches. In scary cases, centralized handling is
even used to start new program flows.

✔ Solution

In recent years, several concepts that originate from functional programming made their way to the mainstream of software
development. In the Java language, examples are lambda expressions as well as the monads Optional and Stream. With regard
to exception handling, there is a functional concept: Railway Oriented Programming. It is based on monads such
as Try or Result. The Java library VAVR includes an implementation of the Try monad. Its usage is not more complex than the
(intended) usage of Optional. By calling Try.of(() -> ...) a supplier function is wrapped in the monadic context Try<T> which is
either Success<T> or Failure. After execution, either the function's result (Type T) or a Throwable will be stored for further
processing. For example, operators such as try.map(x -> ...), whose input is the inner value, can be specified but will only be
executed in the context of Success. However, if an exception has occurred, the operator will do nothing but just passing on
the Throwable. Similar to this, it is also possible to specify operations on the Throwable with mapFailure or to change
context with flatMap.

➔ Example

✚ Further Aspects

• The VAVR user guide contains a short introduction but Baeldung provides a better guide.

• It's best to have a look at the well documented source code.

• The general concept of Railway Oriented Programming will be explained in this video.

• A further implementation of Try can be found in Scala.

https://www.vavr.io/vavr-docs/#_try
https://www.baeldung.com/vavr-try
https://github.com/vavr-io/vavr/blob/master/src/main/java/io/vavr/control/Try.java
https://vimeo.com/97344498
https://www.scala-lang.org/api/2.9.3/scala/util/Try.html

