

ToiletPaper #125
Best Practice RxJava2 Testing

Author: Alexander Pöhlmann / Software Engineer / Office Leipzig

✖Problem

Many may wonder how to test correctly with RxJava, because it is not so easy to test an asynchronous process. In many cases,
the other thread is slower or faster than expected. This leads to problems when writing tests with the usual JUnit
functionalities –tests are often paused too long or fail from time to time.
Another problem is that some tests often take very long to complete when executed normally. For this reason, tests are often
written incompletely or not written at all.

✔ Solution

To avoid this, RxJava offers several possibilities to test these processes optimally and efficiently. But keep in mind that the
naming has changed from RxJava1 to RxJava2 (maybe also RxJava3). However, the basic logic has stayed the same.
On the one hand, there is the TestObserver and the TestSubscriber, which register to the events from the respective
ObservableSource. They have different assert methods to check the received values. But the await methods are very
important as well. With these, tests can be paused and only when the conditions or timeouts are fulfilled, the tests will be
continued.
For many processes, the await methods are sufficient, but sometimes periods of several hundred milliseconds or more have to
be bridged. To wait the whole runtime would be very impractical and have a serious effect on the runtime of the tests after a
certain time.
RxJava2 provides the Testscheduler for this. It allows to fast-forward RxJava operations. Important to know: the Testscheduler
does not work by itself and operations are continued only when using the fast-forward function.

 Tools and Terms

• TestSubscriber
o Allows the examination of events using the various assert* methods.
o Created by the Flowable::test method or registered classically via Flowable::subscribe.

• TestObserver
o Allows the examination of events using the various assert* methods.
o Created by the Observable/Single/Completable::test method or classically registered via

Observable/Single/Completable::subscribe.

• TestScheduler
o TestScheduler is able to manipulate time by fast-forwarding certain time intervals.
o Very useful for processes that are only triggered at certain times.

• await* methods
o Test thread is paused until the respective condition is fulfilled.
o There are different await* methods:

 await() – pauses the thread for a certain amount of time (Is the same as
Thread::sleep)

 awaitCount() – waits until the number of events is reached.
 awaitDone()/awaitTerminalEvent() – waits until the source is completed (even in

case of errors).

• assert* methods
o Various methods for testing the received values.
o Behaves similar to the testing methods of the org.junit.Assert class.
o Examples: assertComplete(), assertEmpty(), assertError(), assertNever(), assertNoErrors(),

assertNoValues().

✚ Further Aspects

• https://www.baeldung.com/rxjava-testing

• https://medium.com/@vanniktech/testing-rxjava-code-made-easy-4cc32450fc9a

https://www.baeldung.com/rxjava-testing
https://medium.com/@vanniktech/testing-rxjava-code-made-easy-4cc32450fc9a

