

ToiletPaper #88
Integrating cdk8s with Flux

Author: Maximilian Brenner / DevOps Engineer / Office Leipzig

✖ Intro
After I got used to cdk8s, I was curious how well it integrates with some current continuous delivery tools for
Kubernetes. Therefore, I sat down for a quick session for integrating it with Flux. I will give you a short
introduction for both tools to make sure you understand everything when we put them together. If you are
already familiar with cdk8s and Flux you can probably skip the next two sections.

? Flux
Flux is a tool for deploying Kubernetes manifests to your cluster. It does so by following the GitOps paradigm
which essentially says that one or more Git repositories are the single source of truth for the configuration of
your system (in this case being Kubernetes). So in its simplest form imagine a Git repository with a single YAML
file that contains a basic Kubernetes manifest (e.g. Deployment + Service). Flux will take care of applying this
to your cluster. If you push more changes into this repository Flux will take care of keeping your cluster in the
desired state.

Now, one could say: “Alright, so what’s the benefit over executing kubectl apply -f *.yml on every

code change through my CI/CD system?” The answer is very straightforward… Flux simply doesn’t need such a
system. Instead of running on any infrastructure that you or someone else has to manage Flux lives in the
Kubernetes cluster itself. If the cluster is down, Flux can and will be down as well. If the cluster is up, Flux should
be running.

? cdk8s
AWS Labs’ cdk8s is a framework that allows you to define Kubernetes deployments with object-oriented
programming languages like TypeScript or Python. It provides you with predefined classes, so called structs,
for each Kubernetes resource. Below you can find a part of some example code defining a single deployment:

Out of this code cdk8s is able to generate valid manifest file(s).

If you wanna get a more detailed introduction feel free to check out my last toiletpaper.

✔ Putting them together
After getting to know the purpose of our two tools, one could ask how to put them together. How can I
deploy my K8s manifests that I define and generate with cdk8s using Flux? As Flux only understands plain
manifest files the main step that we have to automate is their generation. I came up with two possible
solutions that you will find below. If you know of any better or different ways feel free to let me know.

 The obvious way

What’s the first thing to do after celebrating that we don’t need a CI system when using Flux? Correct,
introducing a CI system. ;) The idea is to put our cdk8s code into a repository and setting up a CI job that
generates the Kubernetes manifests and pushes them to a separate branch. Afterwards we setup Flux to use
this branch as its configuration source.

The bash script for our CI job could look like this:

https://www.jambit.com/en/latest-info/toilet-papers/cdk8s-the-future-of-kubernetes-application-deployments/
https://docs.fluxcd.io/
https://www.jambit.com/en/latest-info/toilet-papers/cdk8s-the-future-of-kubernetes-application-deployments/

Be aware that the above script assumes that a valid cdk8s installation is already available. After putting this
script into a CI pipeline that is being triggered on every code change the only thing that is left to do is
correctly configuring Flux. We’ll use the following fluxctl command:

fluxctl install \

 --git-user=${USER} \

 --git-email=${USER}@mycompany.com \

 --git-url=git@git.mycompany.com:${USER}/k8s-deployments \ # the URL of the Git

repository containing the cdk8s code and the generated K8s manifests

 --git-branch=manifests \ # the branch that contains the K8s manifests

 --git-path=dist \ # the folder that contains the K8s manifests

 --namespace=flux | kubectl apply -f -

fluxctl works very similar to other CLI tools in the Kubernetes ecosystem. It generates K8s manifests that

you can directly pipe into kubectl apply -f - and that take care of setting up the Flux controller with

the desired parameters.

After having configured everything correctly the complete flow will look like this:

1. some developer makes changes to the cdk8s code, e.g. in the master branch
2. the CI pipeline is triggered by the new commit
3. the bash script is being executed within the context of the master branch
4. the K8s manifests are being generated
5. the output is being pushed to the manifests branch
6. Flux syncs its copy of the manifests branch
7. Flux detects changes and applies them to the cluster

 The (not yet) elegant way
If you are someone that is familiar with Flux, I already hear you shouting at me: “Max, just use Flux’s
generators!” and that’s exactly what my second solution is based on. Initially I thought this approach is better
than the first one due to the fact that we don’t need a CI system. Though while implementing it a big issue
came up. But first things first, what is a Flux generator?

Generators allow you to produce new or modify existing Kubernetes manifests on the fly before applying

them on your cluster. So instead of your manifests you place a simple .flux.yaml file along with your

cdk8s code into your repository that could look like this:

version: 1

commandUpdated:

 generators:

 - command: cdk8s synth > /dev/null && cat dist/*

Flux will take of care of executing the command(s), capture the output, which should be valid K8s manifests
and apply them on the cluster. Be aware that you have to mute every command that does generate output
not containing K8s manifests. Otherwise you’re gonna run into problems.

To enable the generators feature we have to pass the --manifest-generation=true parameters when

setting up Flux:

fluxctl install \

--git-user=${USER} \

--git-email=${USER}@mycompany.com \

--git-url=git@git.mycompany.com:${GHUSER}/k8s-deployments \ # the URL of the Git

repository containing the cdk8s code and the .flux.yaml file

--manifest-generation=true \ # enable generators

--namespace=flux | kubectl apply -f -

So afterwards we simply put the above .flux.yaml file next to our cdk8s code, push everything to a repo

and we should be good to go, right? Of course not as here comes the big bummer. The execution of
generators happen within the fluxd, the controller of Flux, container. This essentially means that we need to
install the whole node/yarn- and Python/pip-stack into it to be able to execute cdk8s. For me, blowing up a
container that needs to have full control over at least one K8s namespace to this extent is not acceptable.

Anyway I checked if this approach is actually realizable so below you can find the working .flux.yaml .

version: 1

commandUpdated:

 generators:

 - command: (/sbin/apk add yarn python3 npm && pip3 install pipenv && pipenv run

pip install constructs cdk8s && yarn global add cdk8s-cli && cdk8s import && cdk8s

synth) > /dev/null && cat dist/*

According to Flux’s documentation the developers are planning to allow executing generators in a separate
container but for now this is not possible.

✚ Conclusion
So there you have it. Two options of setting up a GitOps process using cdk8s and Flux. For a productive setup
I’d accept the additional effort of setting up / managing a CI system (which one already has in most cases
anyway) and prefer the first option for now. As soon as Flux supports the execution of generators in a
separate container the second option becomes more viable in my opinion.

All in all, I was surprised how well both tools work together. As cdk8s becomes more mature I’ll definitely take
the two into consideration for setting up my next K8s delivery pipeline.

	? cdk8s AWS Labs’ cdk8s is a framework that allows you to define Kubernetes deployments with object-oriented programming languages like TypeScript or Python. It provides you with predefined classes, so called structs, for each Kubernetes resource. Bel...
	? cdk8s AWS Labs’ cdk8s is a framework that allows you to define Kubernetes deployments with object-oriented programming languages like TypeScript or Python. It provides you with predefined classes, so called structs, for each Kubernetes resource. Bel...
	 The (not yet) elegant way If you are someone that is familiar with Flux, I already hear you shouting at me: “Max, just use Flux’s generators!” and that’s exactly what my second solution is based on. Initially I thought this approach is better than t...
	 The (not yet) elegant way If you are someone that is familiar with Flux, I already hear you shouting at me: “Max, just use Flux’s generators!” and that’s exactly what my second solution is based on. Initially I thought this approach is better than t...
	✚ Conclusion So there you have it. Two options of setting up a GitOps process using cdk8s and Flux. For a productive setup I’d accept the additional effort of setting up / managing a CI system (which one already has in most cases anyway) and prefer th...
	✚ Conclusion So there you have it. Two options of setting up a GitOps process using cdk8s and Flux. For a productive setup I’d accept the additional effort of setting up / managing a CI system (which one already has in most cases anyway) and prefer th...

