

ToiletPaper #123
λf. (λx. f (x x))(λx. f (x x))

Author: Andreas Swoboda / Software Engineer / Business Division Banking & Insurance

✖ Problem

In the recent past, C++ (since C++11), Java (since version 8) and many other languages have been extended by
"lambdas". In practice, this is a shortened notation to define an anonymous class with a functional interface
and at the same time instantiate an object of this class. But how to call an anonymous method recursively?!?

✔ Solution

Even though it is possible to create lambdas à la std::function<void()> f = [f]() { /* ... */ f(); }; in C++, it only
works with an additional indirection (e.g. via std::function) and not inline (e.g. as parameter). For Java, it does
not look any better. A more elegant way is to use the "Y combinator" (you might search the internet for
"fixed-point combinator"): You replace the recursive function with a higher-order function that calls its
parameter instead of itself. You put this function into the Y combinator, which repeatedly calls the function
with itself as parameter.
And what does this mysterious combinator look like? Here are possible implementations in C++ (for any
number of parameters of any type) and Java (with currying for the function and an additional parameter):

 C++ Java

 Example

Let's have a look at the standard example for recursion, the factorial. As a function (in C++), and as a lambda in C++17/Java, it
looks like this:

 C++ Function C++17 Lambda Java 8 Lambda

The trailing return type is unfortunately needed in C++, because otherwise the compiler triggers "auto type deduction", which
leads to a cyclic dependency.

✚ Further Aspects

• Proposal to add the Y combinator to the C++ standard library: http://www.open-
std.org/jtc1/sc22/wg21/docs/papers/2016/p0200r0.html

• And do not worry about performance – an optimizing C++ compiler does not generate any overhead.
See for example: https://godbolt.org/ (do not forget “volatile” when experimenting, or the compiler
might optimize out the entire function)

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0200r0.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0200r0.html

