ToiletPaper #121 jambit”

WHERE INNOVATION WORKS

Happily Tweeting Leaks

Author: Kevin Stieglitz / Software Engineer / Business Division Automotive World

x Problem

Nobody likes memory leaks. They are usually difficult to reproduce, even harder to identify and, in worst case,
after long usage they only become noticeable with an OutOfMemoryException.

«/ Solution

Fortunately, there are several ways to detect leaks in Android. One possibility is an internal offer by Android Studio: with the
help of the profiler, the Java heap can be displayed and then analyzed. Since Android Studio 3.6 it can also be filtered
specifically for no longer existing but still referenced Activities/Fragments (Activity/Fragment Leaks). Besides the existing
instances, the references to them are also displayed, so that conclusions about leaks can be drawn. The screenshot below
shows an example application, in which the reference within a singleton is held to one activity, so that the garbage collector
cannot clean it up afterwards.

<  MEMORY ~ @ [4) Aliocation Tracking | Sampled S@E@O M
Instance View
MainActivity Instance. Depth  NatveSts ShalowSts Fstaine.. v
MEMORY  Tota:375MB M Java82ME [l Native:175MB [ Graphics:OMB I Stack:0.1 MB [l Code: 10M PSSRV RV T Leaknotivity ToSingleton/Aotivity@358479780 (Dx15541790) 2 [ 288 82,428
541 . ) _ f ger = | ) 1 ) 2 82440
# mWindow = (PhoneWindow) 3 [ 369 14,957
D1:18.000 01:20.000 01:25.000 01:30.000 01:35.000 01:40.000 £ mMainThread = {Activity Thread]) ] a 188 8.228
Heap Dump - app heap * | Amange by class - Activity/Fragment Leaks Project Classes © 01:35503-01:37.126 ' T | Referances

Activity/Fragment leaks may include false positives. Please see the documentation for details. Fnferance [ Narive Sie | Shallow fin | Aeteined £
Class Name Alooations | NatveSze ShalowSis Rotsin.. ~ B LeakActivity ToSingletanActivity@358479760 (0x 155d790) 2 [ 288 82,428
app heap 2 o 412 B2 552 ' context in SomeSingletonManager@358534984 (Ox 155eci48) 1 [] 12 82,440
€ LeakActivity ivity (de. kevin_stieglit: . ) 1 o 288 82,428  mOwner in SavedStateRegistryController@358481712 (Ix155df30) 3 0 16 16
© ReportFragment {andiroidx ifecycle) 1 o 124 124 f mAppCompatCallback, mContext, mHost in AppCompatDelegateimplé 3 [1] 147 805

A much more comfortable solution is offered by the library LeakCanary. A WeakReference to & 1leak at SomeSingletonManager..
different instances is created in debug builds (for example, to Activities in the
onActivityDestroyed method). A background thread then checks whether the reference has
been cleaned up (after the garbage collector has been executed). If not, the heap is saved in
an .hprof file. This is analyzed in a separate process using the previous WeakReference and
the chain of references is calculated which prevents the object from freeing up its memory.
In LeakCanary, possible causes for the memory leak are highlighted with a red wavy line. This
makes it quite easy to detect leaks at an early stage and to narrow down their origin
efficiently.

gletonActivity

SomeSingletonManager

4+  Further Aspects

e Android app with LeakCanary and multiple popular Leaks: https://github.com/kvn-
stgl/AndroidMemoryLeakExample
e LeakCanary: https://square.github.io/leakcanary/



https://github.com/kvn-stgl/AndroidMemoryLeakExample
https://github.com/kvn-stgl/AndroidMemoryLeakExample
https://square.github.io/leakcanary/

