

ToiletPaper #118
Architecture in software systems – How pattern languages
increase readability and code comprehension

Author: Matthias Mair / Senior Software Architect / Business Division Automotive Bavaria

✖Problem

It’s a typical scenario – a development team stands in the coffee kitchen and criticizes the bad or completely missing
architecture in the software system. This scenario occurs more often in maintenance and further development projects of
older software systems. Age plays a decisive role in this case. The older a system is, the higher is the probability of finding a
strongly eroded architecture [1].

But what does the development team see as architecture in this scenario and what is missing?

✔ Solution

The development team probably lacks a consistent and uniform use of pattern languages [2] in the existing software system,
which would significantly increase readability and code understanding. Pattern languages go one step further than
architectural styles (layers, microservices etc.) and provide structuring specifications for classes (or modules, packages etc.) on
a hierarchically more detailed level. A pattern language defines a set of pattern elements and specifies rules for them. These
rules determine which responsibilities the individual pattern elements have and how they may interact with each other
(mandatory and prohibited rules) [3]. In other words: pattern languages define the use of design patterns and their uniform
use throughout the software system.

It is never too late in a project to deal with pattern languages and use them in an individual context – consistently and
uniformly throughout the code. Documentation of the pattern language is not only helpful but also recommended. It does not
matter whether it is a maintenance or greenfield project. In this sense, pattern languages are a good tool to allow more time in
the coffee kitchen for more in-depth discussions about cat videos and computer games.

 Example

1) Chart of the business logic in the service layer

Pattern element Mandatory and prohibition rules

Service interface Interface in the package com.example.<productname>.service.api with the naming convention *Service

Service
implementation

Class in package com.example.<productname>.service with the annotation @Service
Naming convention *Service<xyz> (default: xyz = Impl)

2) Using Spring Web MVC in the project (excerpt)

Pattern element Mandatory and prohibition rules

Model Is created and filled by the pattern element “Controller”; contains no logic

View Template language (e.g. Thymeleaf with templates (*.html) in the resources/templates directory)
Has only access to the pattern element “Model” and not to “Controller”

Controller Defines the endpoints using @RequestMapping annotations and their specializations
The class has the annotation @Controller and as naming convention *Controller
Controllers are stateless and contain no business logic

✚ Further Aspects

• [1] M. Mair and S. Herold, „Towards Extensive Software Architecture Erosion Repairs“ in Software
Architecture. 7th European Conference, ECSA 2013, Montpellier, 2013.

• [2] Christopher Alexander, A Pattern Language. Towns, Buildings, Construction

• [3] C. Lilienthal, Langlebige Software-Architekturen: Technische Schulden analysieren, begrenzen
und abbauen, dpunkt.verlag, 2015.

http://www.arch.mcgill.ca/prof/mellin/articles/patternla.pdf

